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ABSTRACT

Weak lensing measurements are starting to provide statistical maps of the dis-

tribution of matter in the universe that are increasingly precise and complemen-

tary to cosmic microwave background maps. The most common measurement is

the correlation in alignments of background galaxies which can be used to infer

the variance of the projected surface density of matter. This measurement of

the fluctuations is insensitive to the total mass content and is analogous to using

waves on the ocean to measure its depths. However, when the depth is shallow

as happens near a beach waves become skewed. Similarly, a measurement of

skewness in the projected matter distribution directly measures the total matter

content of the universe. While skewness has already been convincingly detected,

its constraint on cosmology is still weak. We address optimal analyses for the

CFHT Legacy Survey in the presence of noise. We show that a compensated

Gaussian filter with a width of 2.5 arc minutes optimizes the cosmological con-

straint, yielding ∆Ωm/Ωm ∼ 10%. This is significantly better than other filters

which have been considered in the literature. This can be further improved with

tomography and other sophisticated analyses.
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Subject headings: Cosmology-theory-simulation-observation: gravitational lens-

ing, dark matter, large scale structure, window function

1. Introduction

Mapping the mass distribution of matter in the Universe has been a major challenge and

focus of modern observational cosmology. The only direct procedure to weigh the matter in

the universe is by using the deflection of light by gravity. While this effect is very small, a

large statistical sample can provide a precise measurement of averaged quantities.

There are very few direct ways to weigh the universe. The most accurate measurement

by combining CMB data with large scale structure (Spergel et al. 2003; Contaldi et al.

2003) results in Ωm ∼ 0.27 with zero geometric curvature implying a cosmological constant

ΩΛ ∼ 0.73. This type of inference requires combining data measured at different times

and on different length scales. Blanchard et al. (2003) have shown that the same data

can be consistent with Ωm = 1 if one gives up perfect scale invariance for the primordial

perturbations and allows for a neutrino mass of 1eV. The physical constraint arises since

the CMB measures the fluctuations on large scales L ∼Gpc at high redshift z ∼ 1100. The

large-scale structure measures scales of L ∼ 1 − 100 Mpc and a low redshift of z ∼ 0. The

scales only have a small overlap (Tegmark & Zaldarriaga 2002). If one requires perfect scale

invariance of the fluctuations, one is forced into a low matter density with a cosmological

constant. It is perhaps an aesthetic choice to trade scale invariance in time to scale invariance

in space.

Weak gravitational lensing provides a direct statistical measure of the dark matter

distribution regardless of the nature and dynamics of both the dark and luminous matter

intervening between the distant sources and observer. Weak lensing by large-scale structure

can lead to the shear and magnification of the images of distant faint galaxies. Based on

the theoretical work done by Gunn (1967), Blandford et al. (1991), Miralda-Escude (1991)

and Kaiser (1992) performed the first calculation of weak lensing by large-scale structure,

the result of which showed the expected distortion amplitude of weak lensing effect is at

a level of roughly a few percent in adiabatic cold dark matter models. Kaiser (1992) also

made early predictions for the power spectrum of the shear and convergence using linear

perturbation theory. Due to the weakness of the effect, all detections have been statistical in

nature, primarily in regimes where the signal-to-noise is less than unity. Fortunately, several

groups have been able to measure this weak gravitational lensing effect (Bacon et al. 2000;

Refregier et al. 2002; Hoekstra et al. 2002; Van Waerbeke et al. 2002; Jarvis et al. 2002;

Brown et al. 2002; Hamana et al. 2002)recently.
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In the standard model of cosmology, fluctuations start off small, symmetric and Gaus-

sian. Even in some non-Gaussian models like topological defects, initial fluctuations are still

symmetric: positive and negative fluctuations occur with equal probability (Pen et al. 1994).

As fluctuations grow by gravitational instability, this symmetry can no longer be maintained

- over densities can be arbitrarily large, while under dense regions can never have less than

zero mass. This leads to a skewness in the distribution of matter fluctuations. While skew-

ness has already been measured at very high statistical significance (Pen et al. 2003), the

measurement has not resulted in a strong constraint on the total matter density Ωm. The

data has so far been limited by sample variance and analysis techniques. Currently ongoing

surveys, such as the Canada-France-Hawaii-Telescope(hereafter CFHT) Legacy Survey, will

provide more than an order of magnitude improvement in the statistics. In this paper, we

address the optimal analysis of the new data sets and examine the likely plausible accuracies

on the direct measurements of matter density that they can achieve. The calculations rely

only on sub-horizon Newtonian physics.

Several studies have addressed the feasibility of the skewness measurements (Jain et al.

2000; White & Hu 2000). These pioneering contributions provided the first estimates of

the expected strengths of the skewness S3. A real measurement is limited by the sample

variance in S3 and noise properties. Furthermore, the density field is always smoothed by

some filters. Since gravitational lensing can only measure differences in mass, all such filters

must have zero area. In this paper we study a range of filters that have been suggested

in the literature. Our goal is to find the optimal scale for each filter, i.e. the scale that

maximizes the dependence on Ωm. We study the filters that have been mainly employed in

the literature: top-hat, Gaussian, Wiener, aperture and compensated Gaussian. Only the

last three have zero area, and can be applied to real data. For completeness, we also compare

the first two filters, on which much of the literature is based.

In second order perturbation theory, one finds that the skewness scales as the square of

the variance and inversely to density. In terms of the dimensionless surface density κ, one

can express the square of the variance and the skewness as respectively 〈κ̄2〉1/2 ∝ σ8Ω
−0.75
m

and S3 ≡ 〈κ̄3〉
〈κ̄2〉2

∝ Ω−0.8
m . Therefore, one can break the degeneracy between σ8 and Ωm if

only both the variance and the skewness of the convergence are measured. The skewness of

the convergence field has been studied in perturbation theory (Bernardeau et al. 1997; Hui

1999) and initial detections have been reported (Bernardeau et al. 2002). Jain et al. (2000)

investigate weak lensing by large-scale structure using ray tracing in N-body simulations. By

smoothing the convergence field using a top-hat window function, they compute S3 under

two conditions - one with noise and one without noise added in the convergence fields by

the third moment for all varieties of cosmological models. Moments are linear in the PDF:

one can combine the moments of different maps, which gives the same answer as combining
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maps first. Non-linear methods have also been proposed. One can measure S3 is using the

conditional second moment of the κ field, specifically, the second moment of positive κ and

negative κ, which is related to S3 in perturbation theory (Nusser & Dekel 1993; Juszkiewicz

et al. 1995).

Moments are also additive in the presence of noise, such that skewness-free noise (which

realistic symmetric noise sources often have) does not bias the measurement of moments.

White & Hu (2000) presented a calculation for the skewness S3 and its standard de-

viation of weak lensing by large scale-scale structure based on N-body simulations. By

smoothing the κ field using a top-hat filter, they show that the standard deviation of the

skewness after adding simulated shot noise to the κ field are only slightly increased by about

16 per cent compared with the case of pure κ field.

In this paper, we present the first extended comparison of skewness for simulated weak

lensing using different kinds of window functions to isolate the filter that is optimal for

distinguishing cosmological models. We highlight some candidate window functions that

have been used separately in the literature. The outline of the paper is as follows. In §2,

we introduce the strategy of map construction of weak lensing from simulations. In §3, we

describe the detail of window functions employed and present the results and summarize our

conclusions in Section 4.

2. Simulations and map construction of weak lensing

2.1. N-body simulation

We ran a series of N-body simulations with different values of Ωm to generate convergence

maps and make simulated catalogs to calibrate the observational data and estimate errors

in the analysis. The power spectra for given parameters were generated using CMBFAST

(Seljak & Zaldarriaga 1996) and these tabulated functions were used to generate initial

conditions. The power spectra were normalized to be consistent with the earlier two point

analysis from this data set (Van Waerbeke et al. 2002). We ran all of the simulations using

a parallel, Particle-mesh N-body code (Dubinski, J., Kim, J., Park, C. 2003) at 10243 mesh

resolution using 5123 particles on an 8 node quad processor Itanium Beowulf cluster at CITA.

Output times were determined by the appropriate tiling of the light cone volume with joined

co-moving boxes from z ≈ 6 to z = 0. We output periodic surface density maps at 20482

resolution along the 3 independent directions of the cube at each output interval. These

maps represent the raw output for the run and are used to generate convergence maps in

the thin lens and Born approximations by stacking the images with the appropriate weights
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through the comoving volume contained in the past light cone.

All simulations started at an initial redshift zi = 50, and ran for 1000 steps in equal

expansion factor ratios with box size L = 200h−1 Mpc comoving. We adopted a Hubble

constant h = 0.7 and a scale invariant n = 1 initial power spectrum. A flat cosmological

model with Ωm + Λ = 1 was used. Four models were run, with Ωm of 0.2, 0.3, 0.4 and 1.

The power spectrum normalization σ8 was chosen as 1.16, 0.90, 0.82 and 0.57 respectively.

2.2. Simulated Convergence Maps

The convergence κ is the projection of the matter over-density δ along the line of sight

θ weighted by the lensing geometry and source galaxy distribution. It can be expressed as

κ(θ, χs) =

∫ χs

0

W (χ)δ(χ, r(χ)θ))dχ, (1)

where, χ is the comoving distance in unit of c/H0, and H0 = 100 h km/s/Mpc. The weight

function W (χ) is

W (χ) =
3

2
Ωmg(χ)(1 + z) (2)

determined by the source galaxy distribution function n(z) and the lensing geometry.

g(χ) = r(χ)

∫ ∞

χ

dχ′n(χ′)
r(χ′ − χ)

r(χ′)
. (3)

r(χ) is the radial coordinate. r(χ) = sinh(χ) for open, r(χ) = χ for flat and r(χ) = sin(χ)

for closed geometry of Universe. n(z) = n(χ)dχ/dz is normalized such that
∫ ∞

0
n(z)dz = 1.

For the CFHT Legacy Survey, we adopt n(z) = β

z0Γ( 1+α
β

)
( z

z0
)α exp(−( z

z0
)β) with α = 2 and

β = 1.2 and the source redshift parameter z0 = 0.44, which peaks at zp = 1.58z0, respectively.

The mean redshift is z̄ = 2.1z0 and the median redshift is zh = 1.9z0(Van Waerbeke et al.

2002). The source redshift distribution n(z) adopted here is the same as that for VIRMOS.

During each simulation we store 2D projections of δ through the 3D box at every light

crossing time through the box along all x, y and z directions. Our 2D surface density sectional

maps are stored on 20482 grids. After the simulation, we stack sectional maps separated by

a width of the simulation box, randomly choosing the center of each section and randomly

rotating and flipping each section. The periodic boundary condition guarantees that there

is no discontinuities between any two adjacent boxes. We then add these sections with the

weights given by W (z) onto a map of constant angular size, which is generally determined

by the maximum projection redshift. To minimize the repetition of the same structures
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in the projection, we alternatively choose the sectional maps of x, y, z directions during

the stacking. Using different random seeds for the alignments and rotations, we make 40

maps for each cosmological model. Since the galaxy distribution peaks at z ∼ 1, the peak

contribution of lensing comes from z ∼ 0.5 due to the lensing geometry term. Thus the

maximum projection redshift z ∼ 2 is sufficient for the lensing analysis. So we project

the Ω0 = 1, 0.4, 0.3 simulations to z = 2 and obtain 40 maps each with angular width

θκ = 4.09, 3.18 and 3.02 degrees, respectively. To make sufficiently large maps, for Ω0 = 0.2,

we project up to z = 1.8 and obtain maps with angular width θκ = 2.86 degrees. One κ map

created from a cosmological simulation of Ωm =0.3 is shown in Fig.1. The skewness is quite

apparent at this resolution of the simulation. Decreasing the cosmological density while

maintaining the same variance of convergence κ forces structures to be more non-linear, and

thus more skewed. Our challenge is to extract this behavior accurately from realistic data.

We then simulate the CFHT Legacy Survey by adding noise to these clean maps. The

noise κ maps have a pixel-pixel variance σ2
N = 〈e2〉/2/〈Npixel〉. Here 〈e2〉 = 0.472 is the total

noise estimated in the VIRMOS-DESCART survey and here we take it as what would be

expected by the CFHT Legacy Survey. It includes the dispersion of the galaxy intrinsic el-

lipticity, PSF correction noise and photon shot noise. 〈Npixel〉 is the mean number of galaxies

in each pixel. For VIRMOS, the number density of observed galaxies ng ≃ 26/arcmin2, then

〈Npixel〉 = ng[(θκ/1
′

)/N ]2, where N = 2048 is the number of grids by which we store 2D

maps and the field of view θκ is in units of arc min. The factor of 2 arises from the fact

that the shear field has two degrees of freedom (γ1, γ2), where the definition of 〈e2〉 sums

over both. We use this as our best guess for the CFHT Legacy Survey noise. The maps we

obtained through the method described above are non-periodic after the projection. In order

to eliminate edge effects, we crop each smoothed map by a factor of 10% in the margins of

each κ map for model with Ωm = 0.2. For comparison, the size of maps for other models is

the same as that of Ωm = 0.2.

3. The optimal filter

Our goal is to find the optimal filter for constraining Ωm by the non-Gaussianity of weak

lensing. The non-Gaussianity of weak lensing for a clean map is quantified by the skewness

S3

S3(θf ) =
〈κ3〉

〈κ2〉2
, (4)
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Fig. 1.— An initial noise-free κ map in the N-body simulation of a Ωm =0.3 ΛCDM cos-

mology with a map width of 3.02 degrees and 20482 pixels, and the scale is in units of

κ.
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where θf is the characteristic radius of the filter function. When noise is present, the defini-

tion of skewness can be modified to be (White & Hu (2000))

S3(θf ) =
〈κ3

S+N〉

[〈κ2
S+N〉

2 − κ2
N ]2

. (5)

The subscript S indicates a weak lensing signal while N denotes random noise. Since

〈κ3
S+N〉 = 〈κ3

S〉, 〈κ2
S+N〉 − 〈κ2

N〉 = 〈κ2
S〉, thus S3 defined by Eq.5 is statistically equivalent

to the one defined by Eq.4, and the presence of noise has only residual effects on the disper-

sion of S3.

The skewness S3 is a function of cosmological density parameters Ωm and the filter func-

tion. The noise introduces a large dispersion in S3 and also smears its intrinsic dependence

on cosmological parameters. Filtering on a large scale reduces this noise, but also reduces the

intrinsic skewness, and increases sample variance. Our goal is to find the optimal smoothing

scale. Different filters also have different scale dependence,. The general form of this filter

is hard to find, so we will employ five parametrized classes of filters in this paper. They are

the top-hat (hereafter,TH), Gaussian (GS), aperture (AP), compensated Gaussian (CG) and

Wiener (WN) filters, respectively. TH is normalized to have a sum unity in the 2D window

function map, and GS is defined as W (θ) = (1/2πθ2
f) exp (− θ2

2θ2
f

) which is normalized by the

same as TH. AP is defined as W (θ) = 9
π
( 1

θf
)2[1 − ( θ

θf
)2][1/3 − ( θ

θf
)2] and zero for θ > θf ,

which has zero mean. The CG filter is written as W (θ) = 1
2πθ2

f

(

1 − θ2

2θ2
f

)

exp
(

−θ2

2θ2
f

+ 1
)

,

which holds zero area, and is normalized to have a peak amplitude of unity in Fourier space.

This has the feature that it will only damp modes, and never amplify. Many analytic inte-

grals for CG can be evaluated analytically (Crittenden et al. 2002). WN is defined in Fourier

space by W (l) = Cs(l)
Cs(l)+Cn

, where Cs(l) is the angular power spectrum of the signal κ, while

Cn =
4πσ2

N fsky

N2 is that for noise power, and fsky = π( θκ

360
)2 is the fractional sky coverage of

each map.

Given these filters, one can measure S3 and its dispersion ∆S3, which are all functions

of Ωm. ∆S3 causes the inferred Ωm to differ from its true value by a change of ∆Ωm. For

each class of filter, there exists an optimal filter radius θf to minimize ∆Ωm. Comparing the

minimum ∆Ωm of each class of filter, one can then find the optimal one.

From simulated maps, we first calculate the skewness S3 and its standard deviation

∆S3 with different filter radius for all kinds of cosmological models. The CFHT Legacy

Survey will observe 160 square degrees, which is about 24 times larger than the simulated

area. We conservatively decreased the error we obtained in the field-to-field variations by a

factor of about 4 to estimate the sensitivity for the Legacy Survey. Therefore, the standard

deviation of S3 throughout this paper is taken to be one fourth of original predicted value
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from simulation. The skewness S3 and its standard deviation ∆S3 of TH, GS, AP and CG

window functions are shown in Fig.2 and 3, while that of WN filter are plotted in Fig.4.

From Fig.2 and 4, it is shown that the expected S3 decrease with the cosmological density

parameter Ωm for all of filters, which is in consistent with that predicted by perturbation

theory at large θf (Gaztanaga & Bernardeau 1998) and non-linear perturbation theory (Hui

1999; Van Waerbeke et al. 2001). A fixed fluctuation amplitude measured by weak lensing

is a smaller fractional fluctuation in a higher Ωm universe, and thus less non-linear and less

non-Gaussian. S3 also decreases with filter scale θf , as one would expect from the central

limit theorem when smoothing over more independent patches to converge to a Gaussian

distribution. Our dependence of S3 agrees qualitatively with Van Waerbeke et al. (2001),

where the detailed normalization depends on details of the redshift distribution. Estimates

of S3 are possible analytically. To optimize its measurement, we also need its standard

deviation, which is related to a six point function. This is difficult to compute analytically.

The fit for S3 in Fig.2 fails badly on not only small scale but large scales of more than

10 arc minutes. This is due to larger standard deviation of S3 as shown in Fig.3 on both of

the two scales. It is also apparent from Fig.3 that there exists an optimal filtering scale θf

corresponding which minimizes ∆S3 (except for the WN filter that does not depend on filter

radius). This is due to the trade-off between noise on small scales and sample variance on

large scales. S3 as a function of filter radius θf for the TH filter in Fig.2 is in rough agreement

with that of White & Hu (2000) where cosmological model is specified to Ωm = 0.3, but it

differs from Jain et al. (2000). We do not understand the behaviour of the Gaussian window

for large Ω at small angular scale, where a smoothing scale smaller than our resolution seems

to be prefered. But we do not dwell on this since the Gaussian window is not observable on

a shear map.

From the above analyses, it is clear that S3 and ∆S3 depend not only on the smoothing

scale θf but also the cosmological parameter Ωm for all window functions except for the WN

filter. In real observations of weak lensing, one must evaluate the uncertainty in Ωm for

a given observed S3 and ∆S3 to discriminate between cosmological models. One needs to

invert the relation S3 = S3(Ωm, θf ) to obtain Ωm = Ωm(S3, θf ) and estimate the uncertainty

of inferred Ωm by

∆Ωm(S3(Ωm, θf ), θf) = Ωm(S3(Ωm, θf), θf ) − Ωm(S3(Ωm, θf) + ∆S3(Ωm, θf ), θf). (6)

Because of the irregularity of the data points, the inversion is noisy and may introduce

unrealistic artifacts. To overcome this problem, we first fit S3 and ∆S3 by a combination of

power laws of Ωm and θf in the presence of noise, respectively

S3(Ωm, θf ) = A(Ωm)θ
B(Ωm)
f , (7)
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Fig. 2.— Skewness S3 as a function of a smoothing scale θf for all window functions except for

Wiener with cosmological models Ωm = 0.2 (black line), Ωm = 0.3 (red line), Ωm = 0.4(green

line) and Ωm = 1 (blue line) respectively. The standard deviation of S3 is taken to be one

fourth of original predicted value from simulation, because the CFHT Legacy Survey will

observe 160 square degrees, which is about 24 times larger than the simulated area. The

smoother lines correspond to the best fit to S3 for each model. For the purpose of discerning

the error bars of different models, the plots of all models except for Ωm = 0.2 are shifted in

the direction of right. The simulated convergence κ has added random noise.
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Fig. 3.— ∆S3 as a function of a smoothing scale θf for all window functions except for Wiener

with cosmological models Ωm = 0.2 (solid line), Ωm = 0.3 (dashed line), Ωm = 0.4(dash-

dotted line) and Ωm = 1 (dotted line) respectively. The smoother lines correspond to the

best fit to ∆S3 for each model.
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Fig. 4.— Skewness S3 (left panel) and standard deviation ∆S3 (right panel) as a function of

cosmological parameter Ωm for Wiener window function. The dashed lines indicate the best

fit to S3 and ∆S3 respectively. The error bars represent the same significance as Fig.2. The

random noise is added to the simulated convergence κ.
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and

∆S3(Ωm, θf ) = AS(Ωm)θ
BS(Ωm)
f + AN (Ωm)θ

BN (Ωm)
f , (8)

where A(Ωm) = A1Ω
B1

m , B(Ωm) = A2Ω
B2

m , AS(Ωm) = AS1Ω
BS1
m , BS(Ωm) = AS2Ω

BS2
m ,

AN(Ωm) = AN1Ω
BN1
m and BN(Ωm) = AN2Ω

BN2
m respectively. The two terms of ∆S3(Ωm, θf)

represent two sources of the dispersion of S3: the intrinsic dispersion of signal and that caused

by noise. Noise dominates at small smoothing scale, so we expect that BN (Ωm) < 0, while

we expect BS(Ωm) > 0 because of the large smoothing behavior of ∆S3 from signal(Fig.3).

For the Wiener function, we can just parameterize the dependence of skewness S3 and its

standard deviation ∆S3 on Ωm as S3(Ωm) = A1Ω
B1

m and ∆S3(Ωm) = A2Ω
B2

m respectively,

because it is due to its independence of smoothing radius.

We fit the relation of S3 and ∆S3 with a function of Ωm, θf by Eqs.(7) and (8) for all

filters except for WN. Their best fit coefficients AS1, BS1, AS2, BS2, AN1, BN1, AN2, BN2 are

listed in Table 1 respectively, the best fit relations of which are also plotted with smoother

lines in Fig.2 and 3. For the WN filter, the best fit coefficients A1 = 68.03 ± 2.37, B1 =

−0.67 ± 0.03, A2 = 18.17 ± 6.13 and B2 = −0.35 ± 0.26, and the dashed lines in Fig.4

show the best fit to S3 and ∆S3. In the fit of skewness S3, we weighted using the standard

deviation of the skewness. Using these best fit coefficients, we can calculate the ∆Ωm with

the function of Ωm and θf , which are shown in Fig.5 and 6. As expected, we find in Fig.5

that there does exist an optimal smoothing scale for each class of filter (except for the WN

filter) that has a minimum error for the inferred Ωm. This optimal smoothing scale has only

a weak dependence on cosmology except for GS filter. The minimum ∆Ωm decreases toward

lower Ωm. Due to the S3 ∝ Ω∼−0.8
m behavior (Table 1), at low Ωm, a small change of Ωm

results in a large change of S3. But ∆S3 does not have such strong Ωm dependence, thus the

resulting error in Ωm decreases toward lower Ωm. In addition, we show in Fig.6 the relative

uncertainty ∆Ωm/Ωm as a function of Ωm smoothed at the optimal filter radius for all of

filters respectively. It is shown that the relative uncertainty ∆Ωm/Ωm for the Compensated

Gaussian filter almost stays constant with Ωm = 0.1, and takes the smallest value in the

range from Ωm = 0.2 to 0.6 of interest compared with that of other filters. By comparing

the minimum of ∆Ωm for each filter class, we then conclude that the compensated Gaussian

filter to be the optimal filter for all cosmologies. The relative uncertainty ∆Ωm/Ωm at the

optimal filter scale for this filter is nearly independent of Ωm, and the corresponding optimal

filter scale is about 2.5 arc minutes.
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Fig. 5.— ∆Ωm as a function of a smoothing scale θf for all except for Wiener window function

with cosmological models Ωm = 0.2 (solid line), Ωm = 0.3 (dashed line), Ωm = 0.4(dash-

dotted line) and Ωm = 1 (dotted line) respectively. The simulated convergence κ is added

with random noise.
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Fig. 6.— The relative uncertainty ∆Ωm/Ωm as a function of Ωm smoothed at the opti-

mal filter radius for Top-hat(solid line), Gaussian(dashed line), Aperture(dash-dotted line),

Compensated Gaussian(dotted line) and Wiener(dash-tridotted line) filters respectively.
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4. Conclusions

We have studied the power of weak lensing surveys to measure the matter density of

the universe without relying on any exterior data sets. We found that the CFHT Legacy

Survey can measure a fractional accuracy in Ωm of 10%, which is competitive with global

joint analyses, but bypasses a large number of cross calibration uncertainties.

We ran a series of high resolution N-body simulation to study statistical skewness prop-

erties of weak lensing by large-scale structure in the universe with a range of cosmological

matter density parameters. We added noise due to intrinsic ellipticity of background faint

galaxies to the simulated κ fields and smoothed it using different filters with a range of

smoothing radii. We calculated the skewness S3 of the smoothed κ field with added Gaus-

sian noise and predicted the uncertainty ∆Ωm for the cosmological mass density parameter

for a given S3 and smoothing radius θf . We examined the relative discriminating power of

different window functions for distinguishing cosmological models in the upcoming CFHT

Legacy Survey. Except for the Wiener filter, we found the optimal smoothing radius for all of

four window functions that minimizes ∆Ωm. This optimal smoothing scale has only a weak

dependence on cosmology. The compensated Gaussian function was the optimal filter for

measuring Ωm from skewness. The relative uncertainty ∆Ωm/Ωm smoothed at the optimal

filter radius for Compensated Gaussian filter is about 10%.

To overcome the irregularity of the simulated S3 and ∆S3, we have fitted their smooth-

ing scale and cosmology dependence with some phenomenological power laws. One could

derive these relations analytically using perturbation theory following the theoretical work of

Bernardeau et al. (1997). But since skewness is intrinsically non-linear, such a perturbation

approach has to be tested against simulations. In fact, in our work based on simulations,

the optimal filter radius is a few arc minutes or ∼ 1 Mpc/h, which lies in strongly non-linear

regime, where perturbation theory breaks down (Gaztanaga & Bernardeau 1998). In the

non-linear regime, a semi analytical model, hyperextended perturbation theory (hereafter

HEPT) (Scoccimarro & Frieman 1999), which applies at the highly non-linear regime, and a

fitting formula to interpolate between the quasi-linear and highly non-linear regime (Scocci-

marro & Couchman 2001), have been applied to predict S3 (Hui 1999; Van Waerbeke et al.

2001). Since these models reply on simulations for calibration, they by no means can produce

better result than simulations. Furthermore, to calculate the lensing ∆S3 analytically, one

has to know the S6 of the density field, which can be predicted by HEPT but has not been

tested against simulations (Scoccimarro & Frieman 1999). So we’d rather using our fitting

formula approach instead of adopting these analytical results.
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Table 1. Best Fit to S3 and ∆S3 by Eq.(7) and Eq.(8)

Top-hat Gaussian Aperture Compensated Gaussian

A1 62.16±1.21 65.79±1.11 252.74±4.01 90.33±0.69

B1 -0.75±0.02 -0.64±0.01 -0.94±0.02 -0.81±0.01

A2 -0.16±0.03 -0.17±0.02 -0.24±0.01 -0.18±0.01

B2 -0.13±0.11 -0.07±0.09 -0.42±0.02 -0.43±0.03

AS1 3.47±0.04 5.43±0.08 2.20±0.17 1.47±0.07

BS1 -0.25±0.02 -0.07±0.03 -0.79±0.10 -0.71±0.05

AS2 0.79±0.01 0.84±0.01 0.73±0.03 0.98±0.02

BS2 0.10±0.02 -0.002±0.02 -0.06±0.04 0.23±0.03

AN1 12.18±1.75 7.02±0.86 380.75±108.86 8.11±1.60

BN1 -0.79±0.13 -0.62±0.12 -1.05±0.23 -0.98±0.17

AN2 -0.42±0.09 -0.05±0.05 -1.90±0.15 -0.87±0.17

BN2 -0.43±0.18 -1.78±0.45 -0.14±0.07 -0.35±0.14


